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Section 2.5 - Exponential Functions

Properties of Exponential Functions

Property (General Properties of Exponents)

Leta,b> 0, a,b+# 1, and x, y be real numbers. The following
properties are satisfied:
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Properties of Exponential Functions

Property (General Properties of Exponents)

Leta,b> 0, a,b+# 1, and x, y be real numbers. The following
properties are satisfied:
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Q a=2& ifandonlyifx =y
©Q a“=b*forallx ifandonlyifa= b

Finite Math Exponential and Logarithmic Functions 8 February 2017 2/13




Section 2.5 - Exponential Functions

The Natural Number

There is one number that occurs in applications a lot: the natural
number e.
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approaches as x tends towards oco.
This number often shows up in growth and decay models, such as

population growth, radioactive decay, and continuously compounded
interest.
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Section 2.5 - Exponential Functions

The Natural Number

There is one number that occurs in applications a lot: the natural
number e. One definition of e is the value which the quantity

approaches as x tends towards oco.

This number often shows up in growth and decay models, such as
population growth, radioactive decay, and continuously compounded
interest. If ¢ is the initial amount of the measured quantity, and r is the
growth/decay rate of the quantity (r > 0 is for growth, r < Q is for
decay), then the amount after time ¢ is given by

A= ce".
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Section 2.5 - Exponential Functions

Growth and Decay Example

Example

In 2013, the estimated world population was 7.1 billion people with a
relative growth rate of 1.1%.

(a) Write a function modeling the world population t years after 2013.
(b) What is the expected population in 2015? 20257 20357
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Section 2.5 - Exponential Functions

Now You Try It!

Example

The population of some countries has a relative growth rate of 3% per
year. Suppose the population of such a country in 2012 is 6.6 million.
(a) Write a function modeling the population t years after 2012.

(b) What is the expected population in 20177? 20207
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Section 2.5 - Exponential Functions

Now You Try It!

Example

The population of some countries has a relative growth rate of 3% per
year. Suppose the population of such a country in 2012 is 6.6 million.

(a) Write a function modeling the population t years after 2012.
(b) What is the expected population in 20177? 20207

Solution

(a) P =6.66%03
(b) 7.67 million; 8.39 million
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Section 2.6 - Logarithmic Functions

Inverse Functions

The inverse of a function is given by running the function backwards.
But when can we do this?
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Inverse Functions

The inverse of a function is given by running the function backwards.
But when can we do this?

Consider the function f(x) = x2. If we run f backwards on the value 1,
what x-value do we get?
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Section 2.6 - Logarithmic Functions

Inverse Functions

The inverse of a function is given by running the function backwards.
But when can we do this?

Consider the function f(x) = x2. If we run f backwards on the value 1,
what x-value do we get?

Since (1)? = 1 and (—1)? = 1, we get two values when we run x?
backward! So x2 is not invertible.
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Section 2.6 - Logarithmic Functions

Inverse Functions

We know that not every function is invertible. In order for a function to
be invertible, we need each range value to come from exactly one
domain value. We call such functions one-to-one.
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Section 2.6 - Logarithmic Functions

Inverse Functions

We know that not every function is invertible. In order for a function to
be invertible, we need each range value to come from exactly one
domain value. We call such functions one-to-one.

If we have a one-to-one function

y =f(x)

we can form the inverse function by switching x and y and solving for
y:

solve for y
—

x = 1(y) y=1"(x).
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Section 2.6 - Logarithmic Functions

Logarithms

We will focus on one particular inverse function: the inverse of the
function f(x) = b* (b >0, b#1).

Definition (Logarithm)

The logarithm of base b is defined as the inverse of bX. That is,

y=b" << x=log,y.
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We will focus on one particular inverse function: the inverse of the
function f(x) = b* (b >0, b#1).

Definition (Logarithm)

The logarithm of base b is defined as the inverse of bX. That is,
y=b" << x=log,y.

Since the domain and range switch when we take inverses, we have

function domain range
f(x)=b* (—o0,00) (0,00)

Finite Math Exponential and Logarithmic Functions 8 February 2017 8/13



Section 2.6 - Logarithmic Functions

Logarithms

We will focus on one particular inverse function: the inverse of the
function f(x) = b* (b >0, b#1).

Definition (Logarithm)
The logarithm of base b is defined as the inverse of bX. That is,
y=b" << x=log,y.

Since the domain and range switch when we take inverses, we have

function domain range
f(x)=b* (—o0,00) (0,00)
f(x) = logp x

Finite Math Exponential and Logarithmic Functions 8 February 2017 8/13



Section 2.6 - Logarithmic Functions

Logarithms

We will focus on one particular inverse function: the inverse of the
function f(x) = b* (b >0, b#1).

Definition (Logarithm)

The logarithm of base b is defined as the inverse of bX. That is,
y=b" << x=log,y.

Since the domain and range switch when we take inverses, we have

function domain range
f(x)=b" (-00,00) (0,0)
f(x) = logyx (0, 0)

Finite Math Exponential and Logarithmic Functions 8 February 2017 8/13



Section 2.6 - Logarithmic Functions

Logarithms

We will focus on one particular inverse function: the inverse of the
function f(x) = b* (b >0, b#1).

Definition (Logarithm)

The logarithm of base b is defined as the inverse of bX. That is,
y=b" << x=log,y.

Since the domain and range switch when we take inverses, we have

function domain range
f(x)=b | (—o0,00) | (0,00)
f(x) =logpx | (0,00) | (—o0,00)
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Section 2.6 - Logarithmic Functions

Properties of Logarithms

Property (Properties of Logarithms)
Letb,M,N > 0, b# 1, and p, x be real numbers. Then
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Properties of Logarithms

Property (Properties of Logarithms)
Letb,M,N > 0, b# 1, and p, x be real numbers. Then

Q log,1=0
©Q logyb="1
© log, b* = x
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Property (Properties of Logarithms)
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Property (Properties of Logarithms)
Letb,M,N > 0, b# 1, and p, x be real numbers. Then
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Properties of Logarithms

Property (Properties of Logarithms)
Letb,M,N > 0, b# 1, and p, x be real numbers. Then

Q log,1=0
©Q logyb="1
© log, b* = x
(4] blogs X — x

Q log, MN = log, M + log, N
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Properties of Logarithms

Property (Properties of Logarithms)
Letb,M,N > 0, b# 1, and p, x be real numbers. Then
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Property (Properties of Logarithms)
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Section 2.6 - Logarithmic Functions

Properties of Logarithms

Property (Properties of Logarithms)
Letb,M,N > 0, b# 1, and p, x be real numbers. Then

Q log,1=0
©Q logyb="1
© log, b* = x
(4] blogs X — x

Q log, MN = log, M + log, N

e IOgbAI\/II = IOgb M — IOgb N

@ log, MP = plog, M
Q logy M =log, N ifand only if M = N
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Section 2.6 - Logarithmic Functions

The Natural Logarithm

Just as with exponential functions, if we choose our base to be the
number e, we get a special logarithm, the natural logarithm.
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The Natural Logarithm

Just as with exponential functions, if we choose our base to be the
number e, we get a special logarithm, the natural logarithm.

loge X = In X.
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Section 2.6 - Logarithmic Functions

The Natural Logarithm

Just as with exponential functions, if we choose our base to be the
number e, we get a special logarithm, the natural logarithm.

loge X = In X.

We can actually rewrite a logarithm in any base in terms of In:
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Section 2.6 - Logarithmic Functions

The Natural Logarithm

Just as with exponential functions, if we choose our base to be the
number e, we get a special logarithm, the natural logarithm.

loge X = In X.

We can actually rewrite a logarithm in any base in terms of In:

los x In x
o = —F
&b Inb
(See the textbook for a proof of this.)
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Section 2.6 - Logarithmic Functions

Using Properties of Exponents and Logarithms

Example

Solve for x in the following equations:
(a) 7 — 290.2x

(b) 16 = 5%

(c) 8000 = (x — 4)3
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Section 2.6 - Logarithmic Functions

Reminder of Some Exponent Types

A quick reminder of different types of exponents:
e a’”
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Reminder of Some Exponent Types

A quick reminder of different types of exponents:

°ea"=1

e arn=Va
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Reminder of Some Exponent Types

A quick reminder of different types of exponents:

°ea"=1

e arn=Va
e a'/2=/a
e a®=Ya
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